Comparative evaluation of greenhouse gas emissions and specific energy consumption of different drying techniques in pear slices

Author:

Kaveh Mohammad,Çetin Necati,Gilandeh Yousef Abbaspour-,Sharifian Faroogh,Szymanek Mariusz

Abstract

AbstractIn recent years, global warming, climate change, and carbon emissions have emerged due to the uncontrolled use of fossil fuels and the lack of widespread use of renewable energy sources on a global scale. This research investigated specific energy consumption (SEC) and greenhouse gases (GHG) emissions (carbon dioxide [CO2] and nitrogen oxides [NOX]) during the drying of pear samples by five different types of dryers, namely, convective (CV), infrared (IR), microwave (MW), combined IR/CV, and MW/CV. Moreover, the quality properties of dried pears, such as shrinkage, rehydration (RR), and color change were determined. The results showed that the highest shrinkage (72.53%) and color change (ΔE = 33.41) values were obtained in CV drying at 50 °C and thickness of 2 mm and IR dryer 1000 W and thickness of 6 mm, respectively. The greatest rehydration rate (4.25) was also determined in MW/CV drying at 450 W and an air temperature of 60 °C. The lowest SEC was observed for the MW/CV dryer with a power of 630 W and air temperature 70 °C (20.25 MJ/kg), while the highest SEC (267.61 MJ/kg) was obtained in the CV drying (50 °C, sample thickness of 6 mm). The highest CO2 and NOX emissions (GT-GO power plant) were 280.45 and 1.55 kg/kg water in the CV dryer at 50 °C and a thickness of 6 mm. In conclusion, the increases in IR and MW power and temperatures led to reduced CO2 and NOX emissions, while the increases in sample thickness led to increase CO2 and NOX emissions.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3