The malting parameters: steeping, germination, withering, and kilning temperature and aeration rate as possibilities for styrene mitigation in wheat beer

Author:

Kalb Valerian,Seewald Torsten,Hofmann Thomas,Granvogl MichaelORCID

Abstract

AbstractAiming at the mitigation of the toxicologically relevant styrene formed during wheat beer brewing, different malting parameters, such as steeping temperature, germination temperature, withering and kilning temperatures applied during kiln-drying, and aeration rate, were evaluated for their suitability to reduce the content of cinnamic acid, the precursor of styrene, in malts of barley and wheat, responsible for the input of the undesired precursor into the brewing process. According to the results of the present study, higher steeping temperatures, higher germination temperatures, lower aeration rates, and lower withering temperatures during malting are beneficial for the overall reduction of cinnamic acid in wort produced with barley and wheat malts. Thereby, the withering temperature showed the highest impact among the investigated parameters, able to reduce the soluble cinnamic acid content in wort by up to 72%, followed by the germination temperature in combination with the aeration rate and the steeping temperature with reduction capacities of 52 and 16%, respectively. Additionally, a kilning temperature of 200 °C led to the absence of enzyme activities in dark malts, which might also be the main reason for the low phenolic acid contents found in the corresponding wort, finally causing the low concentrations of styrene but also to a certain extent of desired vinyl aromatics in dark wheat beers.

Funder

Allianz Industrie Forschung

Universität Hohenheim

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3