Abstract
AbstractThe use of bacterial or fungal α-amylases is common in wheat bread production to improve several quality-related parameters such as loaf volume, crust color or staling behavior. To study the impact of exogenous α-amylases on straight dough wheat bread, we quantitated mono-, di- and oligosaccharides and residual α-amylase activity in bread crumb during storage for up to 96 h. Discovery-driven proteomics of the five α-amylase preparations studied showed that only a few different amylases per preparation were responsible for the hydrolytic effect. Compared to the control, the supplementation with α-amylase from Bacillus amyloliquefaciens in wheat dough preparation led to major changes in the sugar composition of bread crumb during storage with the formation of oligosaccharides like maltopentaose, maltohexaose, maltoheptaose, and maltooctaose. A residual activity corresponding to 4.0% of the applied activity was determined in the breads prepared with α-amylase from B. amyloliquefaciens, but no residual activity was detected for any of the other fungal or bacterial α-amylases from Aspergillus oryzae or Thermoactinomyces vulgaris. Whether the detected residual activity is related to the characteristics of bread staling or bread crumb properties must be clarified in further studies.
Funder
Allianz Industrie Forschung
Karlsruher Institut für Technologie (KIT)
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,Biochemistry,General Chemistry,Food Science,Biotechnology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献