Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques
Author:
Publisher
Springer Science and Business Media LLC
Subject
Metals and Alloys,General Engineering
Link
http://link.springer.com/content/pdf/10.1007/s11771-021-4619-8.pdf
Reference77 articles.
1. LI X, ZHOU J, WANG S, LIU B. Review and practice of deep mining for solid mineral resources [J]. Chinese Journal of Nonferrous Metals, 2017, 27(6): 1236–1262. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2017.06.021. (in Chinese)
2. ZHOU J, LI X, MITRI H S. Evaluation method of rockburst: State-of-the-art literature review [J]. Tunn Undergr Sp Tech, 2018, 81: 632–659. DOI: https://doi.org/10.1016/j.tust.2018.08.029.
3. LI X, GONG F, TAO M, DONG L, DU K, MA C, ZHOU Z, YIN T. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782. DOI: https://doi.org/10.1016/j.jrmge.2017.04.004.
4. KAISER P K, MCCREATH D R, TANNANT D D. Canadian rockburst research program 1990–1995, vols 1–6 [R]. Sudbury, Ontario: CAMIRO Mining Division, 1997.
5. ZHOU J, LI X B, SHI X Z. Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines [J]. Safety Science, 2012, 50(4): 629–644. DOI: https://doi.org/10.1016/j.ssci.2011.08.065.
Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Refined Approaches for Open Stope Stability Analysis in Mining Environments: Hybrid SVM Model with Multi-optimization Strategies and GP Technique;Rock Mechanics and Rock Engineering;2024-07-11
2. Rockburst prediction using artificial intelligence techniques: A review;Rock Mechanics Bulletin;2024-07
3. Deep Learning in Rockburst Intensity Level Prediction: Performance Evaluation and Comparison of the NGO-CNN-BiGRU-Attention Model;Applied Sciences;2024-06-29
4. Toward Precise Long-Term Rockburst Forecasting: A Fusion of SVM and Cutting-Edge Meta-heuristic Algorithms;Natural Resources Research;2024-06-19
5. EPB-TBM performance prediction using statistical and neural intelligence methods;GEOMECH ENG;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3