Abstract
AbstractTo successfully deal with a complex fouling problem usually entails a good understanding based on a broad spectrum of additional data. Meanwhile, a huge amount of process data is recorded and may be utilized to create a better understanding and prediction of the fouling status of an apparatus or the entire production plant. We propose a systematic approach to generate training data in a pipe fitting as a pre-step before the potential use of the entire data set of the production plant, irrespective of the relevance for the fouling prediction. Therefore, a temperature-based detection of the heat transfer resistance of plastic discs (representing 'artificial’ fouling) and a particulate material deposition (representing ‘real’ fouling) was applied in a pipe fitting obtaining reproducible results. The parameter variation experiments exhibit linear fouling curves and are therefore very suitable for model training. The temperature measurements confirm a correlation between the obtained temperature drop and the layer thickness of the plastic discs as well as the deposited particle fouling mass.
Funder
Deutsche Bundesstiftung Umwelt
Technische Universität Braunschweig
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献