Abstract
AbstractHeat pipes provide highly efficient heat transfer and are powerful tools in thermal management systems. In contrast to most established systems, heat pipes operating within moving systems such as electric vehicles or machine tools are exposed to unsteady acceleration forces. In order to guarantee proper heat pipe function in scenarios involving accelerated movement, it is necessary to examine the effect of acceleration forces on the heat pipe behavior. This paper presents experimental investigations on the thermal performance of translationally moving heat pipes. The designed experimental set-up consists of a measurement platform mounted to a linear direct drive. By obtaining the temperature gradient between evaporator and condenser section, the thermal resistance of heat pipes is determined at standstill and under linear motion. The experiments were conducted using heat pipes with sintered, mesh and grooved wicks. The results demonstrate the motion influence on the thermal resistances depending on the heat pipe orientation and heat input.
Funder
Deutsche Forschungsgemeinschaft
Technische Universität Chemnitz
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,Condensed Matter Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献