Pin-fin metal alloy structures enhancing heat transfer in PCM-based heat storage units

Author:

Dmitruk Anna,Naplocha Krzysztof,Kaczmar Jacek W.,Smykowski Daniel

Abstract

AbstractPCMs (phase change materials) applied in heat storage technology are on the one hand characterised by relatively large specific heat capacity, and on the other hand by relatively low thermal conductivity (e.g. 0.2 W·m−1·K−1) for paraffin), which prolongs the charging/discharging cycles of heat accumulators based on such materials. In order to improve the heat transfer within PCMs, spatially shaped pin-fin metal alloy structures are being developed that have been immersed in the PCM material. Pin-fin metallic structures can be manufactured via investment casting technology. The 3D structures produced using this technique can be modified and adjusted in order to improve the heat transfer parameters (heat conductivity, specific heat transfer area). For this study, complex metal alloy pin-fin structures were immersed in paraffin, and an experimental test stand was built in order to examine the heat transfer characteristics of composite PCMs with pin-fin metal structures. Multiple heating/cooling cycles confirmed the enhanced transfer of heat inside the heat storage unit and allowed us to ascertain the decreased temperature gradient within the heat accumulator. The heat transfer phenomenon was simulated to show heating and melting course nearby metal inserts and confirm the beneficial influence of the applied pin-fin geometry, that can be further optimized. The thermal behaviour of the PCM, tested with DSC and TGA analysis, was used as an input for the simulation.

Funder

ERANet-LAC

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3