Thermal streak spacing in fully developed duct flow with different Reynolds and Prandtl numbers

Author:

Sharma Mohit PramodORCID,Tiselj Iztok,Kren Jan,Mikuž Blaž,Cizelj Leon

Abstract

AbstractThe present study investigates the behaviour of thermal streaks on a heated foil which is cooled with turbulent flow in a square duct channel. Real-time infrared thermography is used to visualize and measure the spacing between the thermal streaks. A stainless-steel foil with a thickness of 25 microns is cooled by water. The experiments were performed in a range of Reynolds numbers from 5000 to 20000 and Prandtl numbers from 3 to 7. The mean temperature, root-mean-square of temperature and autocorrelation function have been calculated and used to measure the average thermal streak spacing and power spectra in the spanwise and streamwise directions. The root mean square temperature was 0.3 °C to 0.5 °C which corresponds to roughly 10% of the mean temperature difference between foil and water. The uncertainty in mean temperature difference and root mean square temperature was around 5% and 10%, respectively. The measured thermal streak spacing was 100 wall unit to 180 wall unit under the present experimental range. The uncertainty in measured thermal streak spacing was around 2.5%. The effects of Reynolds number, Prandtl number and heat flux on the thermal streak spacing and also on the statistics of the temperature field have been presented and discussed in this paper. A new correlation has been proposed to predict the dimensionless thermal streak spacing. The error in the prediction is estimated within ± 15 %.

Funder

Slovenian Research Agency

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3