Abstract
AbstractNumerical simulations have been carried out in support of an experimental campaign conducted in the MEKKA laboratory at KIT. The aim is investigating liquid metal heat transfer with an imposed magnetic field in a model geometry relevant for the study of water cooled lead lithium blankets for fusion reactors. In the breeding zone of this blanket concept, cooling pipes are immersed in the liquid metal in which convective motion occurs due to significant temperature gradients. The test-section features a rectangular box containing two horizontal cylinders kept at constant differential temperatures in order to establish a temperature gradient that drives the buoyant flow. A magnetic field $${\textbf{B}}$$
B
is applied parallel to gravity. The magneto-convective flow, which results from the presence of electromagnetic forces and temperature gradients in the fluid, is relatively complex, since the liquid metal has to move around the cylinders. For weak magnetic fields, a convective recirculation is fed by a jet-like flow formed by the boundary layers that detach from the pipe walls and recombine behind the obstacles. For sufficiently strong $$\textbf{B}$$
B
, the thermal field resembles that of a conductive regime with vertical isotherms and the fluid is nearly stagnant in most of the cavity except in layers parallel to magnetic field lines and tangent to the cylinders. The rate of convective heat transfer decreases with an increase of the magnetic field. Numerical simulations complement experimental results and give insight into phenomena that cannot be directly analyzed by means of measured quantities.
Funder
Euratom Research and Training Programme
Karlsruher Institut für Technologie (KIT)
Publisher
Springer Science and Business Media LLC
Subject
Fluid Flow and Transfer Processes,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献