Magneto-convective flows around two differentially heated cylinders

Author:

Mistrangelo C.ORCID,Bühler L.,Brinkmann H-J.,Courtessole C.,Klüber V.,Koehly C.

Abstract

AbstractNumerical simulations have been carried out in support of an experimental campaign conducted in the MEKKA laboratory at KIT. The aim is investigating liquid metal heat transfer with an imposed magnetic field in a model geometry relevant for the study of water cooled lead lithium blankets for fusion reactors. In the breeding zone of this blanket concept, cooling pipes are immersed in the liquid metal in which convective motion occurs due to significant temperature gradients. The test-section features a rectangular box containing two horizontal cylinders kept at constant differential temperatures in order to establish a temperature gradient that drives the buoyant flow. A magnetic field $${\textbf{B}}$$ B is applied parallel to gravity. The magneto-convective flow, which results from the presence of electromagnetic forces and temperature gradients in the fluid, is relatively complex, since the liquid metal has to move around the cylinders. For weak magnetic fields, a convective recirculation is fed by a jet-like flow formed by the boundary layers that detach from the pipe walls and recombine behind the obstacles. For sufficiently strong $$\textbf{B}$$ B , the thermal field resembles that of a conductive regime with vertical isotherms and the fluid is nearly stagnant in most of the cavity except in layers parallel to magnetic field lines and tangent to the cylinders. The rate of convective heat transfer decreases with an increase of the magnetic field. Numerical simulations complement experimental results and give insight into phenomena that cannot be directly analyzed by means of measured quantities.

Funder

Euratom Research and Training Programme

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Fluid Flow and Transfer Processes,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3