1. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y.: Generative adversarial networks. arXiv preprint (2014). https://arxiv.org/abs/1406.2661
2. Garcia,, G.R., Michau G., Ducoffe, M., Gupta, J.S. & Fink, O.: Time series to images: monitoring the condition of industrial assets with deep learning image processing algorithms. arXiv preprint (2020). https://arxiv.org/abs/2005.07031v2
3. Smith, W.A., Randall, R.B.: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study. Mech. Syst. Signal Process. 64–65, 100–131 (2015). https://doi.org/10.1016/j.ymssp.2015.04.021
4. Sawalhi, N.: Diagnostics Prognostics and fault simulation for rolling element bearings. PhD thesis of the University of New South Wales, Australia (2007). http://unsworks.unsw.edu.au/fapi/datastream/unsworks:1509/SOURCE1?view=true
5. Wang, W. & Wong, A.K.: Linear prediction and gear fault diagnosis. In: Proceedings of the 13th International Congress on Condition Monitoring and Diagnostic Engineering Management (COMADEM2000)