Pharmacometric estimation methods for aggregate data, including data simulated from other pharmacometric models

Author:

Välitalo Pyry Antti Juhana

Abstract

AbstractLack of data is an obvious limitation to what can be modelled. However, aggregate data in the form of means and possibly (co)variances, as well as previously published pharmacometric models, are often available. Being able to use all available data is desirable, and therefore this paper will outline several methods for using aggregate data as the basis of parameter estimation. The presented methods can be used for estimation of parameters from aggregate data, and as a computationally efficient alternative for the stochastic simulation and estimation procedure. They also allow for population PK/PD optimal design in the case when the data-generating model is different from the data-analytic model, a scenario for which no solutions have previously been available. Mathematical analysis and computational results confirm that the aggregate-data FO algorithm converges to the same estimates as the individual-data FO and yields near-identical standard errors when used in optimal design. The aggregate-data MC algorithm will asymptotically converge to the exactly correct parameter estimates if the data-generating model is the same as the data-analytic model. The performance of the aggregate-data methods were also compared to stochastic simulations and estimations (SSEs) when the data-generating model is different from the data-analytic model. The aggregate-data FO optimal design correctly predicted the sampling distributions of 200 models fitted to simulated datasets with the individual-data FO method. Graphic abstract

Funder

University of Eastern Finland (UEF) including Kuopio University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3