Maximum a posteriori Bayesian methods out-perform non-compartmental analysis for busulfan precision dosing

Author:

Hughes Jasmine H.,Long-Boyle Janel,Keizer Ron J.

Abstract

AbstractDose personalization improves patient outcomes for many drugs with a narrow therapeutic index and high inter-individuality variability, including busulfan. Non-compartmental analysis (NCA) and model-based methods like maximum a posteriori Bayesian (MAP) approaches are two methods routinely used for dose optimization. These approaches vary in how they estimate patient-specific pharmacokinetic parameters to inform a dose and the impact of these differences is not well-understood. Using busulfan as an example application and area under the concentration–time curve (AUC) as a target exposure metric, these estimation methods were compared using retrospective patient data (N = 246) and simulated precision dosing treatment courses. NCA was performed with or without peak extension, and MAP Bayesian estimation was performed using either the one-compartment Shukla model or the two-compartment McCune model. All methods showed good agreement on real-world data (correlation coefficients of 0.945–0.998) as assessed by Bland–Altman plots, although agreement between NCA and MAP methods was higher during the first dosing interval (0.982–0.994) compared to subsequent dosing intervals (0.918–0.938). In dose adjustment simulations, both NCA and MAP estimated high target attainment (> 98%) although true simulated target attainment was lower for NCA (63–66%) versus MAP (91–93%). The largest differences in AUC estimation were due to different assumptions for the shape of the concentration curve during the infusion phase, followed by how the methods considered time-dependent clearance and concentration–time points collected in earlier intervals. In conclusion, although AUC estimates between the two methods showed good correlation, in a simulated study, MAP lead to higher target attainment. When changing from one method to another, or changing infusion duration and other factors, optimum estimated exposure targets may require adjusting to maintain a consistent exposure.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3