Investigation of the effects of titanium oxide concentration on the sinterability, microstructural characteristics, mechanical properties, in vitro bioactivity, and cell culture behavior of chicken-derived hydroxyapatite

Author:

Gökçe HasanORCID

Abstract

AbstractThis study focuses on how titanium oxide (TiO2) in concentrations ranging from 0.5 to 4% by weight added the hydroxyapatite (CHA) made from chicken femur bones’, affects sinterability, microstructural, mechanical, and in vitro bioactivity properties. According to the results of the experiments, it was determined that CHA decomposed into whitlockite, alpha tricalcium phosphate (α-TCP), tetracalcium phosphate (TTCP), and calcium oxide (CaO) phases at different temperatures. Rutile and perovskite (CaTiO3) phases were also found in TiO2 added CHAs in addition to these phases. With increasing sintering temperature of CHA, the diameters and the heights of the samples decreased. Density increased up to 1250 °C and decreased at 1300 °C respectively. while the partial density value showed similar behavior with density and hardness, At 1200 °C, the maximum values of fracture toughness (1.071 MPam1/2) and compressive strength (145.417 MPa) were attained; however, as sintering temperatures increased, these values shifted downward to 0.882 MPam1/2 and 111.096 MPa, respectively. It has been determined that grain growth and decomposition are the underlying factors in obtaining the highest density, hardness, fracture toughness and compressive strength values for CHA at different temperatures. Among the TiO2 added CHAs, the best properties are obtained for CHA-0.5TiO2 sintered at 1300 °C (Density: 3.0057 g/cm3, Hardness: 3.973 GPa, Fracture toughness: 1.583 MPam1/2 and Compressive strength: 170.045 MPa) and the properties of the CHA-TiO2 composite decreased with increasing TiO2 ratio. This is due to the fact that increasing TiO2 has a detrimental impact on CHA’s sinterability behavior and causes it to become more porous and degrade more quickly. It was discovered through in vitro bioactivity and cell culture assays that the addition of TiO2 had a detrimental impact on the proliferation of bone tissues.

Funder

Istanbul Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3