Physical properties and sinterability of pure and iron-doped bismuth sodium titanate ceramics

Author:

Muhammed Khalid Rmaydh,Scrimshire Alex,Sterianou Iasmi,Bell Anthony M. T.,Bingham Paul A.

Abstract

AbstractPure (BNT) and iron-doped bismuth sodium titanate (Fe-BNT) ceramics were produced according to the formula Bi0.5Na0.5Ti1−xFexO3−0.5x, where x = 0 to 0.1. The addition of Fe2O3 enables decreasing the sintering temperature to 900 °C in comparison with 1075 °C for pure BNT, whilst also achieving lower porosities and greater densities. This is attributed to oxygen vacancy generation arising from substitution of Fe3+ onto the Ti4+ site of the BNT perovskite structure, and the resulting increase in mass transport that this enables during sintering. X-ray diffraction (XRD) analysis of Fe-BNT samples shows single-phase BNT with no secondary phases for all studied Fe contents, confirming complete solid solution of Fe. Rietveld refinement of XRD data revealed a pseudocubic perovskite symmetry (Pm-3m), and unit cell lengths increased with increasing Fe content. Scanning electron microscopy (SEM) showed that average grain size increases with increasing Fe content from an average grain size of ~ 0.5 μm in (x = 0) pure BNT to ~ 5 μm in (x = 0.1) Fe-doped BNT. Increasing Fe content also led to decreasing porosity, with relative density increasing to a maximum > 97% of its theoretical value at x = 0.07 to 0.1. The addition of Fe to BNT ceramics significantly affects electrical properties, reducing the remnant polarization, coercive field, strain and desirable ferroelectric properties compared with those of pure densified BNT. At room temperature, a high relative permittivity (ɛ′) of 1050 (x = 0.07) at an applied frequency of 1 kHz and a lower loss factor (tanδ) of 0.006 (x = 0.1) at an applied frequency of 300 kHz were observed by comparison with pure BNT ceramics.

Funder

Higher Committee for Education Development in Iraq

Publisher

Springer Science and Business Media LLC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3