Morphological analysis and high-temperature phase stability of spark plasma sintered TiN-MWCNTs ceramic composite

Author:

Akinribide Ojo JeremiahORCID,Akinwamide Samuel Olukayode,Olubambi Peter Apata

Abstract

AbstractThe microstructure, mechanical properties, and phase stability of TiN+MWCNTs ceramic-based composite were studied. Ball milling and spark plasma sintering (SPS) techniques were adopted for synthesizing titanium nitride (TiN) composites containing 1, 3, and 5 wt. percent (wt. %) multiwalled carbon nanotubes (MWCNT). At a temperature of 1000 °C where the phase stability was investigated, the effects of MWCNT addition on thermal treatment and mechanical characteristics of the fabricated composites were explored. According to the results, the resultant effect of ball milling on the ad-milled powders and sintering at a temperature of 1800 °C played a critical role in the homogenous diffusion of MWCNTs into the TiN ceramic matrix. It was further noted that the addition of different wt. % of multiwalled carbon nanotube helped in stabilizing the FCC-crystal phases at this elevated temperature. A slight transformation was observed in the microstructures, as the core and the outer rim phases remained stable in their crystallographic orientation. The varying addition of MWCNTs retained the α-FCC phase both at the core and the outer rim phase during and after thermal exposure of 1000 °C for 3 h. The composite with 1wt. % MWCNT content exhibited the highest hardness of 40 GPa with a fracture toughness of 12.22 MPa m1/2, while the least hardness value of 12.5 GPa was recorded by the unreinforced TiN sample. The effect of mechanical alloying and thermal exposure of the ceramic composites significantly enhanced the strengthening and toughening of the composites.

Funder

University of Johannesburg

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3