Quantitative evaluation of the progressive wear of powered interproximal reduction systems after repeated use

Author:

Livas C.,Baumann T.,Flury S.,Pandis N.

Abstract

Abstract Purpose To evaluate the residual surface roughness of 5 common diamond-coated interproximal reduction (IPR) systems after consecutive in vitro applications in relation to system, diamond grain size, and instrument thickness. Methods IPR was performed on 80 extracted human incisors using motor-driven strips and discs under predefined conditions. The IPR auxiliaries were applied at 5 consecutive sessions of 20 s on intact interproximal surfaces, and the surface profile (Ra, Rz, Rmax) was analyzed at baseline and after each session with an optical profilometer. Results No overall significant difference in the roughness values was found between systems (P = 0.07 for Ra, P = 0.33 for Rz, and P = 0.48 for Rmax). There was a significant average decrease of Ra, Rz, and Rmax for all systems for every unit increase in time by −0.171 μm (P < 0.001), −3.297 (P ≤ 0.001), and −2.788 μm (P = 0.001), respectively. Ra, Rz, and Rmax values increased significantly, i.e., by 0.194 μm (P = 0.003), 5.890 μm (P = 0.001), and 5.319 μm (P = 0.010) as instrument thickness increased by one unit. No significant reductions in Ra, Rz, and Rmax were observed across grain sizes (−0.008 μm [P > 0.05], −0.244 μm [P > 0.05], and −0.179 μm [P > 0.05], respectively). There was no evidence of interaction between system and time as the P values for Ra, Rz, and Rmax were 0.88, 0.51, and 0.70, respectively. Conclusions All IPR materials presented significant gradual decrease of surface roughness after repeated applications. There were no significant roughness changes among auxiliaries of different grain sizes. Thinner auxiliaries showed significantly more roughness reduction, possibly requiring more frequent replacement than thick auxiliaries in clinical practice.

Funder

Academic Center for Dentistry Amsterdam

Publisher

Springer Science and Business Media LLC

Subject

Oral Surgery,Orthodontics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3