Biomechanical model registration for monitoring and simulating large orthodontic tooth movements in the maxilla and mandible

Author:

Schmidt FalkoORCID,Kilic Fatih,Gerhart Catrin Verena,Lapatki Bernd Georg

Abstract

Abstract Purpose Superimposition of digital dental-arch models allows quantification of orthodontic tooth movements (OTM). Currently, this procedure requires stable reference surfaces usually only present in the maxilla. This study aimed to investigate the accuracy of a novel superimposition approach based on biomechanical principles of OTM and the equilibrium of forces and moments (EFM)—applicable in both jaws—for monitoring and simulating large OTM. Methods The study included 7 patients who had undergone extraction of the first (PM1-Ex) or second (PM2-Ex) premolar in each quadrant. Digital models taken at start and end of the T‑Loop treatment phase were superimposed by applying 3 EFM variants differing in the number of teeth used for registration. Maxillary OTM results for EFM were validated against those for a conventional surface registration method (SRM). In an additional case study, OTM were simulated for PM1-Ex, PM2-Ex and non-extraction treatment strategies. Results The EFM variant that included all teeth of the dental arch achieved the highest accuracy, with median translational and rotational OTM deviations from SRM of only 0.37 mm and 0.56°, respectively. On average, retracted canines and first premolars were distalized by 3.0 mm, accompanied by 6.2° distal crown tipping and 12.2° distorotation. The share of space closure by molar mesialization was 19.4% for PM1-Ex quadrants and 34.5% for PM2-Ex quadrants. Conclusion EFM allows accurate OTM quantification relative to the maxillary and mandibular bases even in challenging situations involving large OTM. Superimposition of malocclusion and setup models enables realistic simulation of final tooth positions. This may greatly enhance the value of digital setups for decision-making in orthodontic treatment planning.

Funder

Universität Ulm

Publisher

Springer Science and Business Media LLC

Subject

Oral Surgery,Orthodontics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3