A molecular dynamics study of water confined in between two graphene sheets under compression

Author:

Tseng Ming-Lang,Adesiyan Ayomide,Gassoumi Abdelaziz,Gorji Nima E.ORCID

Abstract

Abstract  Several studies have demonstrated interest in creating surfaces with improved water interaction and adaptive properties because the behavior of water confined at the nanoscale plays a significant role in the synthesis of materials for technological applications. Remarkably, confinement at the nanoscale significantly modifies the characteristics of water. We determine the phase diagram of water contained by graphene stack sheets in slab form, at $$T = 300$$ T = 300 K, and for a constant pressure using molecular dynamics simulations. We discover that, as shown in the simulation, water can exist in both the liquid and vapor phases depending on the confining geometry and compressibility ratio. We also pay attention to how stable the interacting liquid is in relation to the pressure of compression that is perpendicular to the graphene sheets. To build this system and analyze its surface interface properties, we also used analytical and electronic scale modeling approaches. The impact of nanoconfinement on internal pressure may be seen in water, and this can be used to create interfacial materials for the creation of environmentally friendly solar cell materials. Our research highlights the intricate, seemingly random behavior of nanoconfined water—behavior that is difficult for graphene to understand. The results obtained offer crucial direction for system design and configuration of materials at the graphene/water interface that can be utilized as a benchmark for other future designs.

Funder

Research Center for Advanced Materials Science, King Khalid University

Technological University Dublin

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,General Chemistry,Atomic and Molecular Physics, and Optics,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3