Macrophage-like THP-1 cells show effective uptake of silica nanoparticles carrying inactivated diphtheria toxoid for vaccination

Author:

Huang Xinyue,Cavalcante Danielle Paixão,Townley Helen E

Abstract

AbstractNanoparticles may be used in vaccinology as an antigen delivery and/or an immunostimulant to enhance immunity. Porous silica has been identified as an effective adjuvant for more than a decade, and we have therefore investigated the take up rate by an immortalized macrophage-like cell line of a number of mesoporous silica nanoparticles (MSNPs) with differing diameter and pore size. The MSNPs were synthesized using a sol-gel reaction and post-synthesis removal of the template. The MSNPs showed a clear distribution in take up rate peaking at 217 nm, whereas a comparison with solid spherical nanoparticles showed a similar distribution peaking at 377 nm. The MSNPs were investigated before and after loading with antigen. Diphtheria toxoid was used as a proof-of-concept antigen and showed a peak macrophage internalization of 53.42% for loaded LP3 particles which had a diameter of 217.75 ± 5.44 nm and large 16.5 nm pores. Optimal MSNP sizes appeared to be in the 200–400 nm range, and larger pores showed better antigen loading. The mesoporous silica particles were shown to be generally biocompatible, and cell viability was not altered by the loading of particles with or without antigen.

Funder

University of Oxford

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modelling and Simulation,General Chemistry,Atomic and Molecular Physics, and Optics,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3