Abstract
AbstractPhotocatalytic cement is self-cleaning due to the addition of titanium dioxide (TiO2) nanoparticles, which react with sunlight (UV) and produce reactive oxygen species (ROS). Construction workers using photocatalytic cement are exposed not only to cement particles that are irritants but also to nano TiO2 and UV, both carcinogens, as well as the generated ROS. Quantifying ROS generated from added nano TiO2 in photocatalytic cement is necessary to efficiently assess combined health risks. We designed and built an experimental setup to generate, under controlled environmental conditions (i.e., temperature, relative humidity, UV irradiance), both regular and photocatalytic cement aerosols. In addition, cement working activities—namely bag emptying and concrete cutting—were simulated in an exposure chamber while continuously measuring particle size distribution/concentration with a scanning mobility particle sizer (SMPS). ROS production was measured with a newly developed photonic sensing system based on a colorimetric assay. ROS production generated from the photocatalytic cement aerosol exposed to UV (3.3∙10−9 nmol/pt) was significantly higher than for regular cement aerosol, either UV-exposed (0.5∙10−9 nmol/pt) or not (1.1∙10−9 nmol/pt). Quantitatively, the level of photocatalytic activity measured for nano TiO2-containing cement aerosol was in good agreement with the one obtained with only nano TiO2 aerosol at similar experimental conditions of temperature and relative humidity (around 60%). As a consequence, we recommend that exposure reduction strategies, in addition to cement particle exposures, also consider nano TiO2 and in situ–generated ROS, in particular if the work is done in sunny environments.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modelling and Simulation,General Chemistry,Atomic and Molecular Physics, and Optics,Bioengineering
Reference48 articles.
1. Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease [research article]. Biomed Res Int 2012:1–14. https://doi.org/10.1155/2012/936486
2. Aust AE, Ball JC, Hu AA, Lighty JS, Smith KR, Straccia AM, Veranth JM, Young WC (2002) Particle characteristics responsible for effects on human lung epithelial cells. Res Rep Health Eff Inst 110:1–65 discussion 67-76
3. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428. https://doi.org/10.1016/j.apcatb.2015.03.058
4. Batsungnoen K, Hopf NB, Suárez G, Riediker M (2019) Characterization of nanoparticles in aerosolized photocatalytic and regular cement. Aerosol Sci Technol 53(5):540–548. https://doi.org/10.1080/02786826.2019.1578334
5. Brieger K, Schiavone S, Miller FJ, Krause K-H (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142:w13659. https://doi.org/10.4414/smw.2012.13659
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献