Abstract
AbstractWater treatment applications are in high demand recently. In this work, the titania nanotube (TNT) was successfully grown onto the outer surface of the carbon nanotubes (CNTs) via the hydrothermal method. The resultant prepared composite was doped with different ratios of nitrogen. The structural and morphological merits of the composites displayed the successful composition of the matrices, as well as the particle size of the composite within the nanoscale. The optical specifications of the composites demonstrate successful direct and indirect transitions with a high energy gap (> 3 eV). The testing of different oils in the water/oil separation exhibited a high rate of success to split oil and water (> 95%). In this regard, CNT-TNT 1.0 sample reflects the highest efficiency. Compared to other researchers that demonstrate the highest efficiency of their proposed structure, our membrane offers a decent separation efficiency. The proposed composite might provide a feasible and cost-effective method for water/oil separation application in the nanotechnological fields.
Graphical abstract
Funder
National Research Centre Egypt
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,General Chemistry,Atomic and Molecular Physics, and Optics,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献