Synthesis of iron oxide nanoparticles by decomposition of iron-oleate: influence of the heating rate on the particle size

Author:

Ullrich AladinORCID,Rahman Mohammad Mostafizar,Azhar Ahmed,Kühn Michael,Albrecht Manfred

Abstract

AbstractNanoparticles from transition metal oxides can be synthesized in various ways. A common synthesis route uses metal-oleate complex precursors that can be thermally decomposed, leading to crystalline metal-oxide nanoparticles with a narrow size distribution. The morphology of nanoparticles synthesized in such a way is strongly influenced by the synthesis parameters. In this study, the influence of the heating profile during the decomposition of iron oleate precursor on the size of the resulting iron oxide nanoparticles in the presence of surfactants was investigated. As surfactants oleic acid and sodium oleate were utilized for nanoparticle synthesis allowing additionally for shape control. Most of the prepared nanoparticles reveal a characteristic core–shell structure. The dominant structure is the cubic spinel structure of maghemite (γ-(Fe3+)2O3) or magnetite (Fe2+(Fe3+)2O4), while in the core region of the nanoparticles, wustite (Fe2+O) is present. The heating rate applied for the nanoparticle synthesis was systematically varied from 1 to 30 °C/min, while all other parameters were kept constant. A strong increase of the particle size (> 20 nm) was observed for low heating rates, which could be explained qualitatively in the frame of the LaMer model and allows for fine-tuning and control of the particle size.

Funder

Universität Augsburg

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,General Chemistry,Atomic and Molecular Physics, and Optics,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3