Author:
de S. L. Oliveira Ana Luiza C.,dos Santos-Silva Alaine M.,da Silva-Júnior Arnóbio A.,Garcia Vinícius B.,de Araújo Aurigena A.,de Geus-Oei Lioe-Fee,Chan Alan B.,Cruz Luis J.,de Araújo Júnior Raimundo F.
Abstract
AbstractThe inflammation has been identified as factor of tumor progression, which has increased the interest and use of molecules with anti-inflammatory and antioxidant activities in the cancer treatment. In this study, the antioxidant, anti-inflammatory, and antitumor potentials of carvedilol was explored in a different approach. The cholesterol (CHO) was investigated as facilitated agent in the action of carvedilol-loaded nanoparticles. Different formulations exhibited spherical and stable nanoparticle with mean diameter size < 250 nm. The cholesterol changed the copolymer-drug interactions and the encapsulation efficiency. The in vitro cancer study was performed using murine colorectal cancer cell line (CT-26) to observe the cell viability and apoptosis on MTS assay and flow cytometry, respectively. The experiments have demonstrated that cholesterol improved the performance of drug-loaded nanoparticles, which was much better than free drug. The in vivo inflammation peritonitis model revealed that carvedilol-loaded nanoparticles increased the level of glutathione and leukocyte migration mainly when the functionalized drug-loaded nanoparticles were tested, in a lower dose than the free drug. As hypothesized, the experimental data suggest that cholesterol-functionalized carvedilol-loaded PLGA nanoparticles can be a novel and promising approach in the inflammation-induced cancer therapy since showed anti-inflammatory, antioxidant, and antitumor effects.
Funder
Leiden University Medical Center
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,General Chemistry,Atomic and Molecular Physics, and Optics,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献