Comparison of Acellular Nerve Allograft Modification with Schwann Cells or VEGF

Author:

Hoben Gwendolyn,Yan Ying,Iyer Nisha1,Newton Piyaraj,Hunter Dan A.,Moore Amy M.,Sakiyama-Elbert Shelly E.1,Wood Matthew D.,Mackinnon Susan E.

Affiliation:

1. Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA

Abstract

Background Individual contributions of exogenous Schwann cells (SCs) and vascular endothelial growth factor (VEGF) were evaluated in acellular nerve allografts (ANAs). ANA processing removes SCs and vasculature, likely contributing to reduced regeneration compared to autografts. Exogenous SCs may improve the regenerative microenvironment, and VEGF has been shown to stimulate angiogenesis. Replacing these components in ANAs may improve regeneration. Methods A rat sciatic nerve transection model was used to study 20-mm grafts. Four graft types were studied: (1) isograft, (2) ANA, (3) ANA-SCs, and (4) ANA-VEGF. After 10 weeks in vivo, the midgraft and distal nerve to the grafts were analyzed for axonal regeneration using histomorphometry to assess total myelinated axon counts, density, width, and percent neural tissue. Results The most axons in the distal nerve were regenerated in the isograft followed by the ANA- SC group, with 9171±1822 and 7103±1576 regenerated axons respectively. Both the ANA and ANA-VEGF groups had significantly fewer regenerated axons compared to the isograft ( p<0.05) with 5225±2994 and 5709±2657 regenerated axons, respectively. The ANA and ANA-VEGF groups also had significantly reduced fiber density and percent nerve compared to the isograft; the isograft and ANA-SC groups were not significantly different ( p<0.05). Conclusions These results show that SCs improve axonal regeneration in a 20 mm ANA to a greater extent than VEGF. VEGF treatment showed a trend toward increased axonal regeneration but was not significantly different compared to the untreated ANA. The role of VEGF may be clearer in longer grafts where ischemia is a greater factor.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3