Fast solution of the linearized Poisson–Boltzmann equation with nonaffine parametrized boundary conditions using the reduced basis method

Author:

Kweyu Cleophas,Feng Lihong,Stein Matthias,Benner Peter

Abstract

AbstractThe Poisson–Boltzmann equation (PBE) is a nonlinear elliptic parametrized partial differential equation that arises in biomolecular modeling and is a fundamental tool for structural biology. It is used to calculate electrostatic potentials around an ensemble of fixed charges immersed in an ionic solution. Efficient numerical computation of the PBE yields a high number of degrees of freedom in the resultant algebraic system of equations, ranging from several hundred thousand to millions. Coupled with the fact that in most cases the PBE requires to be solved multiple times for a large number of system configurations, for example, in Brownian dynamics simulations or in the computation of similarity indices for protein interaction analysis, this poses great computational challenges to conventional numerical techniques. To accelerate such onerous computations, we suggest to apply the reduced basis method (RBM) and the (discrete) empirical interpolation method ((D)EIM) to the PBE with a special focus on simulations of complex biomolecular systems, which greatly reduces this computational complexity by constructing a reduced order model (ROM) of typically low dimension. In this study, we employ a simple version of the PBE for proof of concept and discretize the linearized PBE (LPBE) with a centered finite difference scheme. The resultant linear system is solved by the aggregation-based algebraic multigrid (AGMG) method at different samples of ionic strength on a three-dimensional Cartesian grid. The discretized LPBE, which we call the high-fidelity full order model (FOM), yields solution as accurate as other LPBE solvers. We then apply the RBM to the FOM. DEIM is applied to the Dirichlet boundary conditions which are nonaffine in the parameter (ionic strength), to reduce the complexity of the ROM. From the numerical results, we notice that the RBM reduces the model order from $${\mathcal {N}} = 2\times 10^{6}$$ N = 2 × 10 6 to $$N = 6$$ N = 6 at an accuracy of $${\mathcal {O}}(10^{-9})$$ O ( 10 - 9 ) and reduces the runtime by a factor of approximately 7600. DEIM, on the other hand, is also used in the offline-online phase of solving the ROM for different values of parameters which provides a speed-up of 20 for a single iteration of the greedy algorithm.

Funder

Max Planck Institute for Dynamics of Complex Technical Systems (MPI Magdeburg)

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Vision and Pattern Recognition,General Engineering,Modeling and Simulation,Software,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3