Model-Based Patterns of Lymphedema Symptomatology: Phenotypic and Biomarker Characterization

Author:

Fu Mei R.ORCID,Aouizerat Bradley E,Yu Gary,Conley Yvette,Axelrod Deborah,Guth Amber A.,Gagner Jean-Pierre,Qiu Jeanna M,Zagzag David

Abstract

Abstract Purpose of the Study More than 50% of breast cancer survivors without a diagnosis of lymphedema suffer daily from numerous and co-occurring lymphedema symptoms. This study aimed to identify lymphedema symptom patterns and the association of such patterns with phenotypic characteristics and biomarkers using latent class analysis (LCA). A prospective, descriptive, and repeated-measure design was used to enroll 140 women and collect data. Recent Findings LCA identified three distinct lymphedema symptom classes at 8 weeks and 12 months post-surgery: low, moderate, and severe symptom classes and associated phenotypic characteristics. Participants were more likely to be in the severe symptom classes at 12 months post-surgery if they had lower education level, cording, an axillary syndrome at 8 weeks post-surgery, neoadjuvant chemotherapy, and radiation. Summary Pre-surgery level of IL1-a, IL-6, IL-8, and VEGF was associated with the severe symptom class at 8 weeks post-surgery, suggesting that such biomarkers may be used to predict risk for lymphedema symptoms.

Publisher

Springer Science and Business Media LLC

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3