Valorisation of Metallurgical Waste for Inorganic Pigments Production

Author:

Paz-Gómez D. C.,Vilarinho I. S.ORCID,Carvalheiras J.,Pérez-Moreno S. M.,Seabra Maria P.,Labrincha João A.,Bolívar J. P.

Abstract

AbstractFour industrial wastes, namely, tionite (T), iron grit (IG), electroplating sludge (ES), and mill scale (MS), are typically disposed of in controlled hazardous landfills because of their toxic content, posing potential harm to human health and to the environment. At the same time, the chemical composition of these wastes, specifically the nature and content of transition metals, makes them potentially attractive for reuse in pigments manufacturing. This work details the study of these residues for producing coloured perovskites to be tested as inorganic pigments. The residues were mixed, in different proportions, and subsequently calcined to produce the required structures. The colouring potential was then assessed in a ceramic paste and in a transparent glaze. Leaching tests were carried out to verify the effective immobilisation of the hazardous species. Dark pigments were successfully obtained from the mixtures of T: ES: Co3O4, T: MS and T: IG. The crystalline phases present in T: ES: Co3O4 are nickel–chromium iron oxide spinel–Fe1.5Cr0.5NiO4 (without Co) or trevorite–Fe2NiO4 (with Co), titanium nickel oxide–TiNiO3 and titanite–CaTiSiO5. The mixtures T: MS and T: IG presented hematite (Fe2O3) and pseudobrookite (Fe2TiO5). Leaching tests confirmed the non-hazardous or inert character of the synthesized pigments. Products showed brownish or greyish hues, depending on the pigment added. T:75ES_1100, T:73ES:2Co_1100, T:75MS_1000, T:75MS_1100 and T:75IG_1000 pigments can effectively and safely be used to colour ceramic paste replacing partially or totally the commercial pigments.

Funder

Universidade de Aveiro

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3