Evaluating Biomass Ash Properties as Influenced by Feedstock and Thermal Conversion Technology towards Cement Clinker Production with a Lower Carbon Footprint

Author:

Tosti LorenzoORCID,van Zomeren André,Pels Jan R.,Comans Rob N. J.

Abstract

AbstractPurpose: This study evaluates the potential of biomass ash as raw clinker material and the influence of biomass feedstock and thermal conversion technology on biomass ash properties. Methods: A set of criteria for biomass feedstock and ash properties (i.e. CaO/SiO2 ratio and burnability) are established. A large dataset was collected and the best combination of biomass feedstock and conversion technology regarding the desired ash quality was identified. Results: Wood biomass has the highest potential to provide the right CaO/SiO2 ratio which is needed to form clinker minerals. Bark content and exogenous Si inclusion in wood biomass have a large influence on the CaO/SiO2 ratio. Paper sludge is composed of Ca, Si and Al and can potentially serve as a source of cement elements. Wood fly ash from pulverized fuel combustion can substitute a considerable amount of raw clinker materials due to its similar burnability. The replacement ratio is determined by the content of adverse elements in the ash (i.e. MgO2 and P2O5). Conclusion: Using biomass ash to lower the CO2 emission from clinker production depends on the joint effort of bioenergy producers, by providing higher quality biomass ash, and cement makers, by adapting the kiln operation to enable a high level of raw material replacement by biomass ash.The presented evaluation of the ash production chain, from biomass selection through combustion technology and ash management, provides new insights and recommendations for both stakeholders to facilitate this sustainable development. Graphic Abstract

Funder

Stichting voor de Technische Wetenschappen

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3