Optimization of Chelating Process of Amino Acids of Leather Waste and Glycine with Different Minerals and Its Relationship with Arthrospira platensis Biological Activities

Author:

Jacob Rania H.,Afify Adel S.,Shanab Sanaa M. M.,Shalaby Emad A.ORCID,Hafez Rehab M.

Abstract

AbstractThere are several factors were taken in consideration such as time, ratio, temperature and pH to improve the chelation process between the amino acids and inorganic ions. The current study aims to optimize the physical factors controlling the synthesis of chelated amino acids with different minerals and to enhance antioxidant and biodiesel production from Arthrospira platensis cultivated in culture enriched with different chelated minerals. In this study; various physical factors such as (ratio of amino acids and minerals; temperature, time and pH) were used for optimization of chelation formation. The blue -green alga Arthrospira platensis was cultivated under different synthesized chelated minerals (T1-T13), the growth rate, antioxidant, antiradical and biodiesel production were determined in all treated alga. The obtained results showed that the optimum conditions for production of chelated amino acid were ratio (2:1 M), temperature at 60 °C, the duration between 4:5 days and the suitable or stability of chelation at pH = 4, Also, the growth rate of A. platensis with Cu-glycinate higher than Cu-leather waste and Zarrouk media. The antioxidant activity results of different extracts of Arthrospira platensis showed that the water extract gave high antioxidant activity against DPPH radical assay than acetone extract in all treatments when compared with untreated culture (Zarrouk’s medium). Arthrospira platensis cultivated on Zarrouk medium supplemented with chelated amino acids with metals was showed an increase in algal pigments and lipids with Mn-LW, Zn-LW and Mg-LW treatments. Also, the results showed that the produced biodiesel was observed with M-LW treatments, which was more than that of glycinate treatments, untreated culture (Zarrouk) and LW biodiesel. Therefore, the highest biodiesel percentages were founded with Zn, Mn and Mg-LW (5.37, 5.25 and 4.86% respectively). The recorded results and material balance data concluded that possibility for use the chelated minerals (glycine and leather wastes) as plant fertilizer in future because its high yield and low fees for production. Graphical Abstract

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3