Strategies for the Revalorization of Sewage Sludge in a Waste Water Treatment Plant Through the Integration of Hydrothermal Processing

Author:

Aragon-Briceño C. I.,Ross A. B.,Camargo-Valero M. A.

Abstract

AbstractDifferent strategies for sewage sludge management have been implemented to minimize the environmental impacts and benefit from the resources embedded in this waste stream. In that regard, Hydrothermal treatments (HTTs) of biomass can contribute generating high-value products (hydrochar) and enhancing biogas generation. In this work, different strategies were analysed for implementing HTTs at WWTPs considering the effect of 2 different process temperatures (160 and 250 °C) on different sewage sludge samples (primary, secondary and digestate sludge). Determination of carbon, nitrogen and phosphorus fate and mass and energy balances in hydrochar and process waters were carried out. HTT promoted solubilization of nitrogen, phosphorus and organic carbon up to 89%, 13% and 124% respectively. Moreover, biomethane yield increased up to 168% reaching methane concentrations up to 79% in the biogas. High heating values of hydrochars ranged from 12.0 to 18.2 MJ kg−1. The integration of HTT as an intermediate step between two-step anaerobic digestion process showed an increase in the net energy balance of up to 124% in comparison with the conventional anaerobic digestion process. Graphical Abstract

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3