Sustainable Valorisation of Animal Manures via Thermochemical Conversion Technologies: An Inclusive Review on Recent Trends

Author:

Rout Prangya Ranjan,Pandey Daya Shankar,Haynes-Parry Macsen,Briggs Caitlin,Manuel Helmer Luís Cachicolo,Umapathi Reddicherla,Mukherjee Sanjay,Panigrahi Sagarika,Goel MukeshORCID

Abstract

Abstract Purpose With its substantial CO2eq emissions, the agricultural sector is a significant greenhouse gas (GHG) emitter. Animal manure alone contributes 16% of the total agricultural emissions. With a rapidly increasing demand for animal-based protein, animal wastes are expected to rise if sustainable manure management practices are not implemented. Manures have the potential to be treated to generate valuable products (biofertiliser and biocrude) or feedstock for energy production. Thermochemical conversion technologies such as pyrolysis, combustion, supercritical gasification (SCWG), etc., have demonstrated their potential in manure management and valorisation. This study provides a broader overview of these technologies and envisages future manure valorisation trends. Methods The paper presents a state-of-the-art review of manure valorisation. Characterisation of manure, modelling and optimisation of thermochemical conversion technologies along with life cycle anaalysis (LCA) are also reviewed. Results The literature review highlighted that the thermochemical conversion technologies can generate bio-oils, syngas, H2, biofuels, heat, and biochar as carbon-free fertiliser. The reported calorific value of the produced bio-oil was in the range of 26 MJ/kg to 32 MJ/kg. However, thermochemical conversion technologies are yet to be commercialised. The major challenges associated with the scale-up of manure derived feedstocks are relatively high moisture and ash content, lower calorific value and higher concentration of impurities (N, Cl, and S). LCA studies conclude that gasification presents a sustainable option for manure valorisation as it is economical with modest environmental threats. Significance of Study This review briefly states the current challenges faced in manure management and presents the case for a sustainable valorisation of animal manures using thermochemical technologies. The economic, environmental and societal advantages of these technologies are presented in order to promote the scientific and industrial development of the subject in the academic and research community. Conclusions Thermochemical conversion technologies are promising for manure valorisation for energy and nutrient recovery. However, their commercialisation viability needs wide-ranging evaluations such as techno-economics, life-cycle analysis, technology take-up and identification of stakeholders. There should be clear-cut policies to support such technologies. It should be advocated amongst communities and industries, which necessitates marketing by the governments to secure a clean energy future for the planet. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3