Impact of High-Intensity Static Magnetic Field on Chemical Properties and Anaerobic Digestion of Sewage Sludge

Author:

Di Costanzo NicolaORCID,Di Capua FrancescoORCID,Cesaro Alessandra,Mascolo Maria Cristina,Pirozzi Francesco,Esposito Giovanni

Abstract

AbstractThe increasing production of sewage sludge at global level has addressed the search for technical solutions to take advantage from it, reducing the environmental burden originating from its disposal. Anaerobic digestion is a suitable option to handle sewage sludge in accordance with circular economy principles, as it generates a methane-rich biogas and a digestate with potential fertilizing properties. Several techniques have been proposed to enhance anaerobic digestion performances and, among these, the application of static magnetic field (SMF) has recently gained attention. Nonetheless, the effects of high-intensity SMF on the sewage sludge destined to anaerobic digestion and its impact on the anaerobic digestion process have not been evaluated yet. This study aims to determine the effects of a 1.5 T SMF on the chemical composition of sewage sludge as well as on methane generation during anaerobic digestion. The main parameters influencing the SMF (i.e., flow rate, mixing ratio of magnetized to non-magnetized sludge, number of pumping cycles, and total solid content) were varied to evaluate the impact of different exposure conditions on the chemical characteristics and methane potential of sewage sludge. An extensive exposure to the high-intensity SMF applied resulted in a 24% decrease of methane production, reduced the concentration of the monitored ionic species (i.e., NH4+, NO3, PO43−, SO42− and Mg2+) in the liquid phase of sewage sludge, and promoted the precipitation of compounds with valuable fertilizing properties, e.g., struvite. These outcomes suggest that high-intensity SMF, although negatively influencing methane generation, can promote the precipitation, and possibly the recovery/recycle of valuable compounds from sewage sludge, enhancing its proper management in a circular economy perspective. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3