Abstract
AbstractLet us consider a quasi-linear boundary value problem $$ -\Delta _p u= f(x,u),$$
-
Δ
p
u
=
f
(
x
,
u
)
,
in $$\Omega ,$$
Ω
,
with Dirichlet boundary conditions, where $$\Omega \subset \mathbb {R}^N $$
Ω
⊂
R
N
, with $$p<N,$$
p
<
N
,
is a bounded smooth domain strictly convex, and the non-linearity f is a Carathéodory function p-super-linear and subcritical. We provide $$L^\infty $$
L
∞
a priori estimates for weak solutions, in terms of their $$L^{p^*}$$
L
p
∗
-norm, where $$p^*= \frac{Np}{N-p}\ $$
p
∗
=
Np
N
-
p
is the critical Sobolev exponent. No hypotheses on the sign of the solutions, neither of the non-linearities are required. This method is based in elliptic regularity for the p-Laplacian combined either with Gagliardo–Nirenberg or with Caffarelli–Kohn–Nirenberg interpolation inequalities. By a subcritical non-linearity we mean, for instance, $$|f(x,s)|\le |x|^{-\mu }\, \tilde{f}(s),$$
|
f
(
x
,
s
)
|
≤
|
x
|
-
μ
f
~
(
s
)
,
where $$\mu \in (0,p),$$
μ
∈
(
0
,
p
)
,
and $$\tilde{f}(s)/|s|^{p_{\mu }^*-1}\rightarrow 0$$
f
~
(
s
)
/
|
s
|
p
μ
∗
-
1
→
0
as $$|s|\rightarrow \infty $$
|
s
|
→
∞
, here $$p^*_{\mu }:=\frac{p(N-\mu )}{N-p}$$
p
μ
∗
:
=
p
(
N
-
μ
)
N
-
p
is the critical Hardy–Sobolev exponent. Our non-linearities includes non-power non-linearities. In particular we prove that when $$f(x,s)=|x|^{-\mu }\,\frac{|s|^{p^*_{\mu }-2}s}{\big [\log (e+|s|)\big ]^\alpha },$$
f
(
x
,
s
)
=
|
x
|
-
μ
|
s
|
p
μ
∗
-
2
s
[
log
(
e
+
|
s
|
)
]
α
,
with $$\mu \in [1,p),$$
μ
∈
[
1
,
p
)
,
then, for any $$\varepsilon >0$$
ε
>
0
there exists a constant $$C_\varepsilon >0$$
C
ε
>
0
such that for any solution $$u\in H^1_0(\Omega )$$
u
∈
H
0
1
(
Ω
)
, the following holds $$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\alpha \le C_\varepsilon \, \Big (1+\Vert u\Vert _{p^*}\Big )^{\, (p^*_{\mu }-p)(1+\varepsilon )}\,, \end{aligned}$$
[
log
(
e
+
‖
u
‖
∞
)
]
α
≤
C
ε
(
1
+
‖
u
‖
p
∗
)
(
p
μ
∗
-
p
)
(
1
+
ε
)
,
where $$C_\varepsilon $$
C
ε
is independent of the solution u.
Funder
Ministerio de Ciencia e Innovación
Universidad Complutense de Madrid
Ministerio de Ciencia, Innovación y Universidades
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献