$$L^\infty $$ a-priori estimates for subcritical p-laplacian equations with a Carathéodory non-linearity

Author:

Pardo RosaORCID

Abstract

AbstractLet us consider a quasi-linear boundary value problem $$ -\Delta _p u= f(x,u),$$ - Δ p u = f ( x , u ) , in $$\Omega ,$$ Ω , with Dirichlet boundary conditions, where $$\Omega \subset \mathbb {R}^N $$ Ω R N , with $$p<N,$$ p < N , is a bounded smooth domain strictly convex, and the non-linearity f is a Carathéodory function p-super-linear and subcritical. We provide $$L^\infty $$ L a priori estimates for weak solutions, in terms of their $$L^{p^*}$$ L p -norm, where $$p^*= \frac{Np}{N-p}\ $$ p = Np N - p is the critical Sobolev exponent. No hypotheses on the sign of the solutions, neither of the non-linearities are required. This method is based in elliptic regularity for the p-Laplacian combined either with Gagliardo–Nirenberg or with Caffarelli–Kohn–Nirenberg interpolation inequalities. By a subcritical non-linearity we mean, for instance, $$|f(x,s)|\le |x|^{-\mu }\, \tilde{f}(s),$$ | f ( x , s ) | | x | - μ f ~ ( s ) , where $$\mu \in (0,p),$$ μ ( 0 , p ) , and $$\tilde{f}(s)/|s|^{p_{\mu }^*-1}\rightarrow 0$$ f ~ ( s ) / | s | p μ - 1 0 as $$|s|\rightarrow \infty $$ | s | , here $$p^*_{\mu }:=\frac{p(N-\mu )}{N-p}$$ p μ : = p ( N - μ ) N - p is the critical Hardy–Sobolev exponent. Our non-linearities includes non-power non-linearities. In particular we prove that when $$f(x,s)=|x|^{-\mu }\,\frac{|s|^{p^*_{\mu }-2}s}{\big [\log (e+|s|)\big ]^\alpha },$$ f ( x , s ) = | x | - μ | s | p μ - 2 s [ log ( e + | s | ) ] α , with $$\mu \in [1,p),$$ μ [ 1 , p ) , then, for any $$\varepsilon >0$$ ε > 0 there exists a constant $$C_\varepsilon >0$$ C ε > 0 such that for any solution $$u\in H^1_0(\Omega )$$ u H 0 1 ( Ω ) , the following holds $$\begin{aligned} \Big [\log \big (e+\Vert u\Vert _{\infty }\big )\Big ]^\alpha \le C_\varepsilon \, \Big (1+\Vert u\Vert _{p^*}\Big )^{\, (p^*_{\mu }-p)(1+\varepsilon )}\,, \end{aligned}$$ [ log ( e + u ) ] α C ε ( 1 + u p ) ( p μ - p ) ( 1 + ε ) , where $$C_\varepsilon $$ C ε is independent of the solution u.

Funder

Ministerio de Ciencia e Innovación

Universidad Complutense de Madrid

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3