Funder
Junta de Andalucía
Ministerio de Ciencia, Innovación y Universidades
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference41 articles.
1. Albuquerque, N., Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: Optimal Hardy–Littlewood type inequalities for polynomials and multilinear operators. Israel J. Math. 211(1), 197–220 (2016). https://doi.org/10.1007/s11856-015-1264-7
2. Araújo, G., Jiménez-Rodríguez, P., Muñoz-Fernández, G.A., Seoane-Sepúlveda, J.B.: Polynomial inequalities on the $$\pi /4$$-circle sector. J. Convex Anal. 24(3), 927–953 (2017)
3. Aron, R.M., Klimek, M.: Supremum norms for quadratic polynomials. Arch. Math. (Basel) 76(1), 73–80 (2001). https://doi.org/10.1007/s000130050544
4. Bayart, F., Pellegrino, D., Seoane-Sepúlveda, J.B.: The Bohr radius of the $$n$$-dimensional polydisk is equivalent to $$\sqrt{(\log n)/n}$$. Adv. Math. 264, 726–746 (2014). https://doi.org/10.1016/j.aim.2014.07.029
5. Białas-Cież, L., Goetgheluck, P.: Constants in Markov’s inequality on convex sets. East J. Approx. 1(3), 379–389 (1995)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Extreme homogeneous trinomials on the unit square;Journal of Mathematical Analysis and Applications;2024-01
2. An Inequality for Polynomials on the Standard Simplex;Numerical Methods and Applications;2023
3. Polynomials on Non-Balanced Convex Bodies;SpringerBriefs in Mathematics;2022
4. Introduction;SpringerBriefs in Mathematics;2022