Abstract
AbstractIn this work we study pivoting strategies for the preconditioner presented in Bru (SIAM J Sci Comput 30(5):2302–2318, 2008) which computes the LU factorization of a matrix A. This preconditioner is based on the Inverse Sherman Morrison (ISM) decomposition [Preconditioning sparse nonsymmetric linear systems with the Sherman–Morrison formula. Bru (SIAM J Sci Comput 25(2):701–715, 2003), that using recursion formulas derived from the Sherman-Morrison formula, obtains the direct and inverse LU factors of a matrix. We present a modification of the ISM decomposition that allows for pivoting, and so the computation of preconditioners for any nonsingular matrix. While the ISM algorithm at a given step computes only a new pair of vectors, the new pivoting algorithm in the k-th step also modifies all the remaining vectors from $$k+1$$
k
+
1
to n. Thus, it can be seen as a right looking version of the ISM decomposition. The results of numerical experiments with ill-conditioned and highly indefinite matrices arising from different applications show the robustness of the new algorithm, since it is able to solve problems that are not possible to solve otherwise.
Funder
Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献