Hall classes of groups

Author:

de Giovanni F.ORCID,Trombetti M.,Wehrfritz B. A. F.

Abstract

AbstractIn 1958, Philip Hall (Ill J Math 2:787–801, 1958) proved that if a group G has a nilpotent normal subgroup N such that $$G/N'$$ G / N is nilpotent, then G is nilpotent. The scope of Hall’s nilpotency criterion is not restricted to group theory, and in fact similar statements hold for Lie algebras and more generally for algebraically coherent semiabelian categories (see Chao in Math Z 103:40–42, 1968; Gray in Adv Math 349:911–919, 2019; Stitzinger in Ill J Math 22:499–505, 1978). We say that a group class $${\mathfrak {X}}$$ X is a Hall class if it contains every group G admitting a nilpotent normal subgroup N such that $$G/N'$$ G / N belongs to $${\mathfrak {X}}$$ X . Thus, Hall’s nilpotency criterion just asserts that nilpotent groups form a Hall class. Many other relevant classes of groups have been proved to be Hall classes; for example, Plotkin (Sov Math Dokl 2:471–474, 1961) and Robinson (Math Z 107:225–231, 1968) proved that locally nilpotent groups and hypercentral groups form Hall classes. Note that these generalizations also hold if groups are replaced by other algebraic structures, for example Lie algebras (see Stitzinger in Ill J Math 22:499–505, 1978). The aim of this paper is to develop a general theory of Hall classes of groups, that could later be reasonably extended to Lie algebras. Among other results, we prove that many natural types of generalized nilpotent groups form Hall classes, and we give examples showing in particular that the class of groups having a finite term in the lower central series is not a Hall class, even if we restrict to the universe of linear groups.

Funder

Università degli Studi di Napoli Federico II

Publisher

Springer Science and Business Media LLC

Reference24 articles.

1. Amberg, B., Franciosi, S., de Giovanni, F.: Groups with an $$FC$$-nilpotent triple factorization. Ricerche Mat. 36, 103–114 (1987)

2. Casolo, C.: Nilpotent subgroups of groups with all subgroups subnormal. Bull. Lond. Math. Soc. 35, 15–22 (2003)

3. Casolo, C.: Groups with all Subgroups Subnormal. AGTA Lost Monographs. Adiuvare, Rome (2022)

4. Chao, C.-Y.: Some characterizations of nilpotent Lie algebras. Math. Z. 103, 40–42 (1968)

5. de Giovanni, F., Trombetti, M.: Infinite minimal non-hypercyclic groups. J. Algebra Appl. 14, 1550143 (2015)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Obituary: Francesco de Giovanni (1955–2024);Mediterranean Journal of Mathematics;2024-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3