Jordan structures of irreducible totally nonnegative matrices with a prescribed sequence of the first p-indices

Author:

Cantó Begoña,Cantó RafaelORCID,Urbano Ana María

Abstract

AbstractLet $$A \in {\mathbb {R}}^{n \times n}$$ A R n × n be an irreducible totally nonnegative matrix with rank r and principal rank p, that is, A is irreducible with all minors nonnegative, r is the size of the largest invertible square submatrix of A and p is the size of its largest invertible principal submatrix. We consider the sequence $$\{1,i_2,\ldots ,i_p\}$$ { 1 , i 2 , , i p } of the first p-indices of A as the first initial row and column indices of a $$p \times p$$ p × p invertible principal submatrix of A. A triple (nrp) is called $$(1,i_2,\ldots ,i_p)$$ ( 1 , i 2 , , i p ) -realizable if there exists an irreducible totally nonnegative matrix $$A \in {\mathbb {R}}^{n \times n}$$ A R n × n with rank r, principal rank p, and $$\{1,i_2,\ldots ,i_p\}$$ { 1 , i 2 , , i p } is the sequence of its first p-indices. In this work we study the Jordan structures corresponding to the zero eigenvalue of irreducible totally nonnegative matrices associated with a triple (nrp) $$(1,i_2,\ldots ,i_p)$$ ( 1 , i 2 , , i p ) -realizable.

Funder

agencia estatal de investigación

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3