Abstract
AbstractIn this paper, we show new results and improvements of the non-Archimedean counterpart of classical analysis in the theory of lineability. Besides analyzing the algebraic genericity of sets of functions having properties regarding continuity, discontinuity, Lipschitzianity, differentiability and analyticity, we also study the lineability of sets of sequences having properties concerning boundedness and convergence. In particular we show (among several other results) the algebraic genericity of: (i) functions that do not satisfy Liouville’s theorem, (ii) sequences that do not satisfy the classical theorem of Cèsaro, or (iii) functionals that do not satisfy the classical Hahn–Banach theorem.
Funder
Universidad Complutense de Madrid
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference46 articles.
1. Aizpuru, A., Pérez-Eslava, C., Seoane-Sepúlveda, J.B.: Linear structure of sets of divergent sequences and series. Linear Algebra Appl. 418(2–3), 595–598 (2006). https://doi.org/10.1016/j.laa.2006.02.041
2. Aizpuru, A., Pérez-Eslava, C., García-Pacheco, F.J., Seoane-Sepúlveda, J.B.: Lineability and coneability of discontinuous functions on $$\mathbb{R}$$. Publ. Math. Debr. 72(1–2), 129–139 (2008)
3. Araújo, G., Bernal-González, L., Muñoz-Fernández, G.A., Prado-Bassas, J.A., Seoane-Sepúlveda, J.B.: Lineability in sequence and function spaces. Stud. Math. 237(2), 119–136 (2017). https://doi.org/10.4064/sm8358-10-2016
4. Aron, R.M., Bernal González, L., Pellegrino, D.M., Seoane Sepúlveda, J.B.: Lineability: The Search for Linearity in Mathematics Monographs and Research Notes in Mathematics, p. xix + 308. CRC Press, Boca Raton (2016)
5. Aron, R.M., Pérez-García, D., Seoane-Sepúlveda, J.B.: Algebrability of the set of non-convergent Fourier series. Stud. Math. 175(1), 83–90 (2006). https://doi.org/10.4064/sm175-1-5
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献