Abstract
AbstractLet X be a rearrangement-invariant space on [0, 1]. It is known that its Zippin indices $$\underline{\beta }{}_X,\overline{\beta }{}_X$$
β
̲
X
,
β
¯
X
and its inclusion indices $$\gamma _X,\delta _X$$
γ
X
,
δ
X
are related as follows: $$0\le \underline{\beta }{}_X\le 1/\gamma _X \le 1/\delta _X\le \overline{\beta }{}_X\le 1$$
0
≤
β
̲
X
≤
1
/
γ
X
≤
1
/
δ
X
≤
β
¯
X
≤
1
. We show that given $$\underline{\beta },\overline{\beta }\in [0,1]$$
β
̲
,
β
¯
∈
[
0
,
1
]
and $$\gamma ,\delta \in [1,\infty ]$$
γ
,
δ
∈
[
1
,
∞
]
satisfying $$\underline{\beta }\le 1/\gamma \le 1/\delta \le \overline{\beta }$$
β
̲
≤
1
/
γ
≤
1
/
δ
≤
β
¯
, there exists a rearrangement-invariant space X such that $$\underline{\beta }{}_X=\underline{\beta }$$
β
̲
X
=
β
̲
, $$\overline{\beta }{}_X=\overline{\beta }$$
β
¯
X
=
β
¯
and $$\gamma _X=\gamma $$
γ
X
=
γ
, $$\delta _X=\delta $$
δ
X
=
δ
.
Funder
Fundação para a Ciência e a Tecnologia
Universidade Nova de Lisboa
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Astashkin, S.V.: On the interpolation of intersections by the real method. St. Petersburg Math. J. 17(2), 239–265 (2006)
2. Bennett, C., Sharpley, R.: Interpolation of operators. Pure and Applied Mathematics, vol. 129. Academic Press Inc, Boston (1988)
3. Cobos, F., Fernández-Cabrera, L.M., Manzano, A., Martínez, A.: Inclusion indices of quasi-Banach spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10(1), 99–117 (2007)
4. Curbera, G.P., Okada, S., Ricker, W.J.: Fine spectra of the finite Hilbert transform in function spaces. Adv. Math. 380:Paper No. 107597, 29, (2021)
5. Fehér, F.: Indices of Banach function spaces and spaces of fundamental type. J. Approx. Theory 37(1), 12–28 (1983)