Nonnil-FP-injective and nonnil-FP-projective dimensions and nonnil-semihereditary rings

Author:

Haddaoui Younes El,Kim HwankooORCID,Mahdou Najib

Abstract

AbstractIn this paper, we introduce the concept of nonnil-FP-injective dimension for both modules and rings. We explore the characterization of strongly $$\phi $$ ϕ -rings that have a nonnil-FP-injective dimension of at most one. We demonstrate that, for a nonnil-coherent, strongly $$\phi $$ ϕ -ring R, the nonnil-FP-injective dimension of R corresponds to the supremum of the $$\phi $$ ϕ -projective dimensions of specific families of R-modules. We also define self-nonnil-injective rings as $$\phi $$ ϕ -rings that act as nonnil semi-injective modules over themselves and establish the equivalence between a strongly $$\phi $$ ϕ -ring R being $$\phi $$ ϕ -von Neumann regular and R being both nonnil-coherent and self-nonnil semi-injective. Furthermore, we extend the notion of semihereditary rings to $$\phi $$ ϕ -rings, coining the term ‘nonnil-semihereditary’ to describe rings where every finitely generated nonnil ideal is u-$$\phi $$ ϕ -projective. We provide several characterizations of nonnil-semihereditary rings through various conceptual lenses. Our study also includes an investigation of the transfer of the nonnil-semihereditary property in trivial ring extensions. Additionally, we define the nonnil-FP-projective dimension for modules and rings, showing that for any strongly $$\phi $$ ϕ -ring, a nonnil-FP-projective dimension of zero is indicative of the ring being nonnil-Noetherian. We also ascertain that, for a strongly $$\phi $$ ϕ -ring R, its nonnil-FP-projective dimension is the supremum of the NFP-projective dimensions across different families of R-modules. Lastly, we provide numerous examples to illustrate our results.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Reference40 articles.

1. Altman, A.B., Kleiman, S.L.: A term of commutative algebra. ResearchGate (2021). https://www.researchgate.net/publication/351211952_A_Term_of_Commutative_Algebra

2. Anderson, D.D., Winders, M.: Idealization of a module. J. Commut. Algebra 1(1), 3–56 (2009)

3. Anderson, D.F., Badawi, A.: On $$\phi $$-Prüfer rings and $$\phi $$-Bézout rings. Houst. J. Math. 30(2), 331–343 (2004)

4. Badawi, A.: On nonnil-Noetherian rings. Commun. Algebra 31(4), 1669–1677 (2003)

5. Bakkari, C., Kabbaj, S., Mahdou, N.: Trivial extensions defined by Prüfer conditions. J. Pure Appl. Algebra 214(1), 53–60 (2010)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3