Abstract
AbstractWe prove in this paper that every almost simple group R with socle isomorphic to a simple group S possesses a conjugacy class of core-free maximal subgroups whose index coincides with the smallest index $${{\,\mathrm{l}\,}}(S)$$
l
(
S
)
of a maximal subgroup of S or a conjugacy class of core-free maximal subgroups with a fixed index $$v_S\le {{\,\mathrm{l}\,}}(S)^2$$
v
S
≤
l
(
S
)
2
, depending only on S. We also prove that the number of subgroups of the outer automorphism group of S is bounded by $$\log ^3{{{\,\mathrm{l}\,}}(S)}$$
log
3
l
(
S
)
and $${{\,\mathrm{l}\,}}(S)^2< |S|$$
l
(
S
)
2
<
|
S
|
.
Funder
Agencia Estatal de Investigación
Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana
Gobierno de Aragón
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献