Abstract
AbstractBranching processes form an important family of stochastic processes that have been successfully applied in many fields. In this paper, we focus our attention on controlled multi-type branching processes (CMBPs). A Feller-type diffusion approximation is derived for some critical CMBPs. Namely, we consider a sequence of appropriately scaled random step functions formed from a critical CMBP with control distributions having expectations that satisfy a kind of linearity assumption. It is proved that such a sequence converges weakly toward a squared Bessel process supported by a ray determined by an eigenvector of a matrix related to the offspring mean matrix and the control distributions of the branching process in question. As applications, among others, we derive Feller-type diffusion approximations of critical, primitive multi-type branching processes with immigration and some two-sex branching processes. We also describe the asymptotic behaviour of the relative frequencies of distinct types of individuals for critical CMBPs.
Funder
Ministerio de Universidades
Innovációs és Technológiai Minisztérium
Agencia Estatal de Investigación
Universidad de Extremadura
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献