On subspaces of spaces $$C_p(X)$$ isomorphic to spaces $$c_{0}$$ and $$\ell _{q}$$ with the topology induced from $$\mathbb {R}^{\mathbb {N}}$$

Author:

Ka̧kol JerzyORCID,Molto Anibal,Śliwa Wiesław

Abstract

AbstractThe linear space of all continuous real-valued functions on a Tychonoff space X with the pointwise topology (induced from the product space $$\mathbb {R}^X$$ R X ) is denoted by $$C_p(X).$$ C p ( X ) . In this paper we continue the systematic study of sequences spaces $$c_{0}$$ c 0 and $$\ell _{q}$$ q (for $$0<q\le \infty $$ 0 < q ) with the topology induced from $$\mathbb {R}^{\mathbb {N}}$$ R N (denoted by $$(c_{0})_p$$ ( c 0 ) p and $$(\ell _{q})_{p}$$ ( q ) p , respectively) and their role in the theory of $$C_p(X)$$ C p ( X ) spaces. For every infinite Tychonoff space X we construct a subspace F of $$C_p(X)$$ C p ( X ) that is isomorphic to $$(c_{0})_p$$ ( c 0 ) p ; if X contains an infinite compact subset, then the copy F of $$(c_{0})_p$$ ( c 0 ) p is closed in $$C_p(X)$$ C p ( X ) . It follows that $$C_p(X)$$ C p ( X ) contains a copy of $$(\ell _{q})_{p}$$ ( q ) p for every $$0<q\le \infty $$ 0 < q . We prove that for any infinite compact space X the space $$C_p(X)$$ C p ( X ) contains no closed copy of $$(\ell _{q})_{p}$$ ( q ) p for $$q\in (0, 1]\cup \{\infty \}$$ q ( 0 , 1 ] { } and no complemented copy for $$0<q\le \infty $$ 0 < q . Relation with results of Talagrand, Haydon, Levy and Odell will be also discussed. Examples and open problems will be provided.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis

Reference42 articles.

1. Arkhangel’ski, A.V.: Topological Function Spaces. Kluwer, Dordrecht (1992)

2. Arkhangel’ski, A. V.: $$C_p$$-theory, in: Recent Progress in General Topology, North-Holland, 1-56 (1992)

3. Banakh, T., Ka̧kol, J.: Metrizable quotients of $$C_p$$-spaces. Topol. Appl. 249, 95–102 (2018)

4. Banakh, T., Ka̧kol, J., Śliwa, W.: Josefson-Nissenzweig property for $$C_{p}$$-spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113, 3015–3030 (2019)

5. Cembranos, P.: $$C(K, E)$$ contains a complemented copy of $$c_{0}$$. Proc. Am. Math. Soc. 91, 556–558 (1984)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weakly web-compact Banach spaces C(X), and $$Lip_0(M)$$, $$\mathcal {F}(M)$$ over metric spaces M;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3