Abstract
AbstractGiven a linear second-order differential operator $${\mathcal {L}}\equiv \phi \,D^2+\psi \,D$$
L
≡
ϕ
D
2
+
ψ
D
with non zero polynomial coefficients of degree at most 2, a sequence of real numbers $$\lambda _n$$
λ
n
, $$n\geqslant 0$$
n
⩾
0
, and a Sobolev bilinear form $$\begin{aligned} {\mathcal {B}}(p,q)\,=\,\sum _{k=0}^N\left\langle {{\mathbf {u}}_k,\,p^{(k)}\,q^{(k)}}\right\rangle , \quad N\geqslant 0, \end{aligned}$$
B
(
p
,
q
)
=
∑
k
=
0
N
u
k
,
p
(
k
)
q
(
k
)
,
N
⩾
0
,
where $${\mathbf {u}}_k$$
u
k
, $$0\leqslant k \leqslant N$$
0
⩽
k
⩽
N
, are linear functionals defined on polynomials, we study the orthogonality of the polynomial solutions of the differential equation $${\mathcal {L}}[y]=\lambda _n\,y$$
L
[
y
]
=
λ
n
y
with respect to $${\mathcal {B}}$$
B
. We show that such polynomials are orthogonal with respect to $${\mathcal {B}}$$
B
if the Pearson equations $$D(\phi \,{\mathbf {u}}_k)=(\psi +k\,\phi ')\,{\mathbf {u}}_k$$
D
(
ϕ
u
k
)
=
(
ψ
+
k
ϕ
′
)
u
k
, $$0\leqslant k \leqslant N$$
0
⩽
k
⩽
N
, are satisfied by the linear functionals in the bilinear form. Moreover, we use our results as a general method to deduce the Sobolev orthogonality for polynomial solutions of differential equations associated with classical orthogonal polynomials with negative integer parameters.
Funder
ministerio de ciencia, innovación y universidades
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference20 articles.
1. Alfaro, M., Álvarez de Morales, M., Rezola, M.L.: Orthogonality of the Jacobi polynomials with negative integer parameters. J. Comput. Appl. Math. 145, 379–386 (2002)
2. Alfaro, M., Pérez, T.E., Piñar, M.A., Rezola, M.L.: Sobolev orthogonal polynomials: the discrete-continuous case. Methods Appl. Anal. 6, 593–616 (1999)
3. Álvarez de Morales, M., Pérez, T.E., Piñar, M.A.: Sobolev orthogonality for the Gegenbauer polynomials $$\{C_n^{(-N+1/2)}\}_{n\geqslant 0}$$. J. Comput. Appl. Math. 100, 111–120 (1998)
4. Bochner, S.: Über Sturm–Liouvillesche polynomsysteme. Math. Z. 29(1), 730–736 (1929)
5. Bruder, A., Littlejohn, L.L.: Nonclassical Jacobi polynomials and Sobolev orthogonality. Res. Math. 61, 283–313 (2012)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献