Abstract
AbstractWe prove the following Farkas’ Lemma for simultaneously diagonalizable bilinear forms: If $$A_1,\ldots ,A_k$$
A
1
,
…
,
A
k
, and $$B:\mathbb {R}^n \times \mathbb {R}^n \rightarrow \mathbb {R}$$
B
:
R
n
×
R
n
→
R
are bilinear forms, then one—and only one—of the following holds:
$$B=a_1 A_1 + \cdots + a_k A_k,$$
B
=
a
1
A
1
+
⋯
+
a
k
A
k
,
with non-negative $$a_i\text {'s}$$
a
i
's
,
there exists (x, y) for which $$A_1(x,y) \ge 0 , \ldots , A_k(x,y) \ge 0$$
A
1
(
x
,
y
)
≥
0
,
…
,
A
k
(
x
,
y
)
≥
0
and $$B(x,y) < 0$$
B
(
x
,
y
)
<
0
.
We study evaluation maps over the space of bilinear forms and consequently construct examples in which Farkas’ Lemma fails in the bilinear setting.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference8 articles.
1. Aron, R., Downey, L., Maestre, M.: Zero sets and linear dependence of multilinear forms. Note Mat. 25(1), 49–54 (2005)
2. ten Dam, A.A., Nieuwenhuis, J.W.: A Farkas lemma for behavioral inequalities. In: Blondel, V.D., Megretski, A. (Eds.), Unsolved problems in mathematical systems and control theory, Princeton, 40–43 (2004)
3. Downey, L.: Farkas’ Lemma and multilinear forms. Missouri J. Math. Sci. 21(1), 65–67 (2009)
4. Farkas, J.: Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27 (1902)
5. Farkas’ lemma: three decades of generalizations for mathematical optimization, TOP (An Official Journal of the Spanish Society of Statistics and Operations Research) 22 (2014)