Abstract
AbstractIn the present paper we study the pointwise and uniform convergence properties of a family of multidimensional sampling Kantorovich type operators. Moreover, besides convergence, quantitative estimates and a Voronovskaja type theorem have been established.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Università degli Studi di Perugia
Fondazione Cassa di Risparmio di Perugia
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference48 articles.
1. Acar, T., Aral, A., Rasa, I.: Approximation by k-th order modifications of Szaás–Mirakyan operators. Stud. Sci. Math. Hungar. 53(3), 379–398 (2016)
2. Acar, T., Costarelli, D., Vinti, G.: Linear prediction and simultaneous approximation by m-th order Kantorovich type sampling series. Banach J. Math. Anal. 14(4), 1481–1508 (2020)
3. Agrawal, P.N., Acu, A.M., Sidharth, M.: Approximation degree of a Kantorovich variant of Stancu operators based on Pólya-Eggenberger distribution. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113(1), 137–156 (2019)
4. Anastassiou, G.A.: Quantitative approximation by perturbed Kantorovich–Choquet neural network operators. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113, 875–900 (2019)
5. Angeloni, L., Costarelli, D., Vinti, G.: A characterization of the convergence in variation for the generalized sampling series. Ann. Acad. Sci. Fenn. Math. 43, 755–767 (2018)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献