Abstract
AbstractLet M be a multimeasure defined on a $$\sigma $$
σ
-algebra and taking values in the family of bounded non-empty subsets of a Banach space X. We prove that M admits a control measure whenever X contains no subspace isomorphic to $$c_0(\omega _1)$$
c
0
(
ω
1
)
. The additional assumption on X is shown to be essential.
Funder
Agencia Estatal de Investigación
Fundación Séneca
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference19 articles.
1. Bartle, R.G., Dunford, N., Schwartz, J.: Weak compactness and vector measures. Can. J. Math. 7, 289–305 (1955)
2. Cascales, B., Kadets, V., Rodríguez, J.: Measurable selectors and set-valued Pettis integral in non-separable Banach spaces. J. Funct. Anal. 256(3), 673–699 (2009)
3. Di Piazza, L., Musiał, K., Sambucini, A.R.: Representations of multimeasures via the multivalued Bartle-Dunford-Schwartz integral. J. Convex Anal. 29(4) (2022)
4. Diestel, J., Uhl, J.J.: Vector Measures, Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I. (1977)
5. Drewnowski, L.: On control submeasures and measures. Stud. Math. 50, 203–224 (1974)