Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference26 articles.
1. Albanese, A.A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010)
2. Boiti, C., Jornet, D.: The problem of iterates in some classes of ultradifferentiable functions. In: “Operator Theory: Advances and Applications”. Birkhauser, Basel. 245, 21–32 (2015)
3. Boiti, C., Jornet, D., Juan-Huguet, J.,: Wave front set with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal., 1–17 (2014). doi: 10.1155/2014/438716 (Article ID 438716)
4. Bolley, P., Camus, J., Mattera, C.: Analyticité microlocale et itérés d’operateurs hypoelliptiques. In: Séminaire Goulaouic–Schwartz, 1978–79, Exp N.13. École Polytech., Palaiseau
5. Bonet, J., Fernández, C., Meise, R.: Characterization of the $$\omega $$ ω -hypoelliptic convolution operators on ultradistributions. Ann. Acad. Sci. Fenn. Math. 25, 261–284 (2000)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A New Class of FBI Transforms and Applications;Journal of Fourier Analysis and Applications;2024-08
2. The Kotake–Narasimhan theorem in general ultradifferentiable classes;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-04-09
3. Global Gevrey vectors;Complex Analysis and its Synergies;2023-08-25
4. The theorem of iterates for elliptic and non-elliptic operators;Journal of Functional Analysis;2022-09
5. Global Wave Front Sets in Ultradifferentiable Classes;Results in Mathematics;2022-02-02