Abstract
AbstractAn internal characterization of the Arkhangel’skiĭ-Calbrix main theorem from [4] is obtained by showing that the space $$C_{p}(X)$$
C
p
(
X
)
of continuous real-valued functions on a Tychonoff space X is K-analytic framed in $$\mathbb {R}^{X}$$
R
X
if and only if X admits a nice framing. This applies to show that a metrizable (or cosmic) space X is $$\sigma $$
σ
-compact if and only if X has a nice framing. We analyse a few concepts which are useful while studying nice framings. For example, a class of Tychonoff spaces X containing strictly Lindelöf Čech-complete spaces is introduced for which a variant of Arkhangel’skiĭ-Calbrix theorem for $$\sigma $$
σ
-boundedness of X is shown.
Funder
Ministerio de Ciencia, Innovación y Universidades
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference30 articles.
1. Arkhangel’skiĭ, A. V.: $$C_{p}$$-theory, In: Hušek, M. and Van Mill, J. (Eds.) Recent Progress in General Topology, Elsevier, Oxford, 1–56 (1992)
2. Arkhangel’skiĭ, A.V.: Topological Function Spaces. Kluwer, Dordrecht (1992)
3. Arkhangel’skiĭ, A.V.: Projective $$\sigma $$-compactness, $$\omega _{1}$$-caliber, and $$C_{p}$$-spaces. Topol. Appl. 104, 13–26 (2000)
4. Arkhangel’skiĭ, A.V., Calbrix, J.: A characterization of $$\sigma $$-compactness of a cosmic space by means of subspaces of $$\mathbb{R}^{X}$$. Proc. Am. Math. Soc. 127, 2497–2504 (1999)
5. Baars, J., de Grott, J., Pelant, J.: Function spaces of completely metrizable spaces. Trans. Am. Math. Soc. 340, 871–883 (1993)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Mathematical Research of Juan Carlos Ferrando;Springer Proceedings in Mathematics & Statistics;2023