Abstract
AbstractThe critical length of a space of functions can be described as the supremum of the length of the intervals where Hermite interpolation problems are unisolvent for any choice of nodes. We analyze the critical length for spaces containing products of algebraic polynomials and trigonometric functions. We show the relation of these spaces with spherical Bessel functions and bound above their critical length by the first positive zero of a Bessel function of the first kind.
Funder
Ministerio de Ciencia e Innovación
Departamento de Educación, Cultura y Deporte, Gobierno de Aragón
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology,Algebra and Number Theory,Analysis
Reference14 articles.
1. Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, 55, Washington D.C., NY (1972)
2. Aldaz, J.M., Kounchev, O., Render, H.: Bernstein operators for exponential polynomials. Constr. Approx. 29(3), 345–367 (2009). https://doi.org/10.48550/arXiv.0805.1618
3. Aldaz, J.M., Kounchev, O., Render, H.: Bernstein operators for extended Chebyshev systems. Appl. Math. Comput. 217(2), 790–800 (2010). https://doi.org/10.1016/j.amc.2010.06.018
4. Baricz, Á., Pogány, T.K.: Turán determinants of Bessel functions. Forum Math. 26(1), 295–322 (2014). https://doi.org/10.1515/form.2011.160
5. Carnicer, J.M., Peña, J.M.: Totally positive bases for shape preserving curve design and optimality of B-splines. Comput. Aided Geom. Design 11(6), 633–654 (1994). https://doi.org/10.1016/0167-8396(94)90056-6
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献